close

標題:

數學知識交流---等比數列和(2)

發問:

(1) 求 5 - 15 + 45 - 135 + 405 - 1215 + .. - 5 × 3^51。 (2) 求 (3^1)/(7^2) + (3^2)/(7^3) + (3^3)/(7^4) + (3^4)/(7^5) + ...。

最佳解答:

(1) 求 5 - 15 + 45 - 135 + 405 -1215 + .. - 5 × 3^51。 等比數列和 = a(r^n - 1)/(r - 1) 5 - 15 + 45 - 135 + 405 - 1215 + ... - 5 × 3^51 = 5 - 15 + 45 - 135 + 405 - 1215 + ... + 5 x 3^50 - 5 × 3^51 = (5 + 45 + 405 + ... + 5 x 3^50) - (15 + 135 + 1215 ... + 5 x 3^51) = (5 + 5 x 9 + 5 x 9^2 + ... 5 x 9^25) - (15 + 15 x 9 + 15 x 9^2 + ... 15 x9^25) = [5 x (9^26 - 1)/(9 - 1)] - [15(9^26 - 1)/(9 - 1)] = -10(9^26 - 1)/8 = -8076352361533341623665300 = = = = = (2) 求(3^1)/(7^2) + (3^2)/(7^3) + (3^3)/(7^4) + (3^4)/(7^5) +... 等比數列的無限項和 = a/(1 - r) 首項 a = 3/49, 公比 r = 3/7 (3^1)/(7^2) + (3^2)/(7^3) + (3^3)/(7^4) + (3^4)/(7^5) + ... = (3/49) / [1 - (3/7)] = (3/49) / (4/7) = (3/49) x (7/4) = 3/28 2011-06-17 20:28:57 補充: 第 (2) 題另一方法: 設 S = (3^1)/(7^2) + (3^2)/(7^3) + (3^3)/(7^4) + (3^4)/(7^5) +... (3/7)S = (3^2)/(7^3) + (3^3)/(7^4) + (3^4)/(7^5) +... 兩式相減: (4/7)S = 3/49 S = 3/28 ..... 答案

 

此文章來自奇摩知識+如有不便請留言告知

其他解答:0D7DAC4E7B8CAAC5

arrow
arrow
    創作者介紹
    創作者 kfsdgte 的頭像
    kfsdgte

    kfsdgte的部落格

    kfsdgte 發表在 痞客邦 留言(0) 人氣()